Pulmonary alveolar proteinosis (PAP) is a rare disease characterized by the progressive accumulation of lipoproteinaceous material in the alveolar space, leading to impaired gas exchange and respiratory symptoms of variable severity. Whole-lung lavage (WLL) remains the gold standard in the treatment of PAP; however, the anesthetic management of patients undergoing WLL can be challenging. In addition to the complications associated with 1-lung ventilation, patients can experience ventilation/perfusion mismatch with subsequent hypoxemia during instillation of the lavage solution. Here, we describe the novel use of high-frequency percussive ventilation (HFPV) provided by a volumetric diffusive respirator (VDR-4) during WLL in a 47-year-old woman with pulmonary alveolar proteinosis. Our observations suggest that high-frequency percussive ventilation is a potentially effective ventilation strategy during WLL that may reduce the risk of hypoxemia and facilitate lavage.

The patient was diagnosed with PAP and subsequently scheduled for WLL. Computed tomography showed that the left lung was more severely affected; thus, we performed left-sided WLL first. Before induction of anesthesia, peripheral oxygen saturation (Spo2) was 86% on room air. In addition to standard anesthetic monitoring, the left radial artery was cannulated for continuous blood pressure monitoring and intermittent blood sampling. After oxygen administration for 3 minutes, saturation increased to 95%. Anesthesia was induced with 2 mg/kg propofol and 1 µg/kg fentanyl; endotracheal intubation with a 37F left-sided double-lumen tube (DLT) was facilitated by 0.5 mg/kg rocuronium. Anesthesia was maintained with 1 minimum alveolar concentration of desflurane.

The patient was placed in the supine position with a bolster placed under the right thorax to induce slight left tilt and facilitate left-sided WLL. The right lung was ventilated with a conventional anesthetic ventilator using synchronized intermittent mandatory ventilation with the following settings: tidal volume, 350 mL; respiratory rate, 18 breaths/min; pressure support, 10 cm H2O; positive end-expiratory pressure (PEEP), 4 cm H2O; and fraction of inspired oxygen, 1.0. The left lung received HFPV provided by a VDR-4 with the following settings: 595/min percussive rate, 16/min convective rate, 10 cm H2O oscillatory continuous positive airway pressure (CPAP), and fraction of inspired oxygen, 1.0. A dual-axis swivel adapter was connected to facilitate uninterrupted HFPV with lavage and suctioning (Figure). Left-lung ventilation was interrupted only when the lavage solution was instilled. It was continued during suctioning, as well as in the absence of any solution. Aliquots of approximately 500 mL of warm saline were instilled into the left lung. After the lung was completely submerged, the saline solution was agitated for approximately 3 minutes via the percussive function of the VDR-4 device. The fluid was aspirated with a suction catheter inserted into the left bronchial lumen of the DLT through the dual-axis swivel adapter (Figure; Supplemental Digital Content, Video, http://links.lww.com/AACR/A183). When suction ceased removing any fluid, HFPV was continued in an attempt to mobilize intra-alveolar fluids. Subsequent suctioning produced further fluid. The initially suctioned fluid was opaque and pinkish in color, so the lavage cycle was repeated until the effluent was clear. In total, eight 500-mL...
 aliquots (total of 4L) of warm saline were instilled into the left lung and 3.2 L of fluid were retrieved. Arterial blood gas analysis after 30 minutes of HFPV initiation showed pH of 7.53; arterial partial pressures of carbon dioxide and oxygen, 39 and 285 mm Hg, respectively; Spo2, 100%; serum bicarbonate concentration of 33 mmol/L; and base excess, +9 mEq/L. Spo2 remained between 95% and 100% throughout the procedure. No additional measures were needed to maintain oxygenation or hemodynamics. Once WLL was complete, we performed bronchoscopy to ensure that there was no residual fluid in the airway and that the left lung was mostly clear of proteinaceous material. We removed the endotracheal tube when the patient met the extubation criteria. Afterward, we provided 50% oxygen via a Venturi mask (Hudson RCI, Mexico) to maintain adequate oxygenation. Blood chemistry parameters after WLL were within normal limits.

Although the patient’s symptoms had improved 1 day after the procedure, wheezing and cough persisted. Because imaging studies of the right lung showed relevant infiltration, we performed right-sided WLL 6 days after the first procedure. Before induction of anesthesia, Spo2 was 90% on room air. We followed a similar anesthetic and lavage technique as for the left WLL. The right lung received HFPV during lavage, while the left was ventilated with a conventional anesthetic ventilator.

The total duration of the procedure was 3 hours. A total of 4.5L of normal saline was instilled into the lung and 3.1 L was retrieved by suction. Spo2, remained between 94% and 100% throughout the procedure. No additional measures were needed to maintain oxygenation or hemodynamics. Because 1.4 L of the instilled fluid was not retrieved, and the patient was tachypneic after reversal of the neuromuscular blockade, mechanical ventilatory support (including PEEP 6 cm H2O and CPAP 10 cm H2O) was continued for 2 hours. On meeting the extubation criteria, the patient was extubated in the recovery room.

We observed an obvious clinical improvement after the right WLL, and the patient was discharged 5 days after the procedure. Her respiratory function was stable at the 1-, 3-, and 6-month follow-ups.

DISCUSSION

WLL remains the gold standard in PAP treatment because it provides long-lasting benefits in most patients. The procedure eliminates lipoproteinaceous material from the alveolar space, thereby improving diffusing capacity and oxygenation. Similar to our patient, most patients with PAP scheduled for WLL are hypoxemic at baseline. Moreover, 1-lung ventilation and instillation of large volumes of fluid increase the risk of intraoperative hypoxemia. In this aspect, the patient’s position is an important factor and depends on the lung to be lavaged and the preference of the treating team. When the lavaged lung is upward, there is a greater risk of fluid spillage into the dependent lung. Various positional maneuvers used to facilitate lavage and drainage may cause DLT displacement and increase the risk of fluid spillage into the contralateral ventilated lung, thus promoting further ventilation/perfusion mismatch and hypoxemia. During the filling phase, perfusion of the lavaged lung is reduced by compression of the pulmonary vasculature, which tends to reduce the intrapulmonary shunt and increase oxygen saturation. By contrast, during drainage, perfusion of the lavaged lung increases, thus increasing the shunt and resulting in hypoxemia.

Several strategies have been described for managing hypoxemia during WLL, including manual ventilation of partially fluid-filled lungs, intermittent ventilation of both lungs, application of CPAP to the nonventilated lung between lavages, and nitric oxide inhalation. In our patient, we used HFPV to reduce the risk of hypoxemia. HFPV is a form of high-frequency ventilation that delivers very small subtidal volumes at high frequencies. Its unique feature is the presence of a gas-driven piston at the end of the endotracheal tube that functions as a sliding Venturi circuit, thereby acting as both an inspiratory and expiratory valve. Another unique HFPV feature is the passive exhalation of subtidal volumes. In addition, HFPV has been shown to improve airway debris and secretion clearance, and to be associated with less barotrauma in patients with inhalational burn injury.

In a prospective study of 35 patients with acute respiratory distress syndrome, HFPV was associated with better oxygenation in patients who did not respond to conventional treatment compared with a historical control. A
retrospective data analysis of 42 patients with moderate and severe acute respiratory distress syndrome showed rapid and sustained improvement in oxygenation and ventilation after HFPV. In a single-center, prospective, randomized controlled trial of 62 burn patients with respiratory failure, HFPV was associated with better oxygenation and ventilation, and with fewer patients requiring rescue ventilation compared with low tidal volume ventilation. In another prospective randomized controlled study of 35 patients with severe burns and inhalation injury, in contrast to conventional ventilation, HFPV improved blood oxygenation during the acute phase, but did not improve mortality.

To the best of our knowledge, this is the first report on the use of HFPV during WLL in a patient with PAP. We did not encounter any hypoxemic episodes during both procedures. This avoided the need for any interventions to treat hypoxemia (eg, recruitment maneuvers or application of high-level PEEP); some of which may have adverse cardiovascular and respiratory effects. The amounts of 4 and 4.5 L of lavage fluid we had instilled during left and right WLL, respectively, were well below the average amount of 15.4 L (range, 5–40 L) and even lower than the lowest amount as reported on the basis of questionnaires from 20 centers in 14 countries practicing WLL, possibly related to better clearance of secretions by HFPV.

In conclusion, our experience suggests that HFPV is a potentially effective strategy for WLL, which may reduce the risk of hypoxemia and facilitate lung lavage. However, it is important that the VDR-4 is operated by an individual who is experienced in its use.

REFERENCES